Indian Statistical Institute, Bangalore. M. Math End-semester Exam : Measure-theoretic Probability

Instructor : Yogeshwaran D.

22nd November, 2017

Max. points : 30.

Time Limit : 3 hours.

Answer any three questions only but at least one question each from Part I and Part II needs to be answered.

Give complete proofs. Please cite/quote appropriate results from class or assignments properly. You are also allowed to use results from other problems in the question paper.

1 PART I

- 1. (a) State and prove the extended dominated convergence theorem by replacing convergence a.e. with convergence in measure. (6)
 - (b) Let $(\mathbb{R}, \mathcal{F})$ be a measurable space such that all singletons are measurable. For all $x \in \mathbb{R}$, define $f_x : \mathbb{R} \to \mathbb{R}$ as $f_x(y) = \mathbf{1}[y = x]$. Show that the σ -algebra generated by the collection of functions $\{f_x : x \in \mathbb{R}\}$ is the countable co-countable σ -algebra. (4)
- 2. Let μ, ν and ρ be σ -finite measures on (Ω, \mathcal{F}) . Assume the Radon-Nikodym derivatives here are everywhere nonnegative and finite. Suppose that $\mu \ll \rho$ and $\nu \ll \rho$, and let $A = \{d\nu/d\rho > 0, d\mu/d\rho = 0\}$. Show that $\nu \ll \mu$ if and only if $\rho(A) = 0$ and in which case

$$d\nu/d\mu = \mathbf{1}[d\mu/d\rho > 0] \frac{d\nu/d\rho}{d\mu/d\rho}.$$
 (10)

- 3. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space and m, the Lebesgue measure.
 - (a) Suppose that f is a non-negative measurable function, then show that $\int f d\mu = (\mu \times m)\{(x, y) : 0 < y < f(x)\}$. (5)
 - (b) Suppose that f is a real-valued measurable function and define graph of the function to be $G(f) := \{(x, y) : y = f(x)\} \subset \Omega \times \mathbb{R}$. Show that G(f) is measurable with respect to the product σ -algebra and $(\mu \times m)(G(f)) = 0$. (5).

2 PART II

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and all the random variables are defined on this space.
 - (a) Let X_1, \ldots, X_n be independent exponential (λ) random variables with $\lambda \in (0, \infty)$. Define the random variable $X := \min\{X_1, \ldots, X_n\}$ and the random variable $J : \Omega \to \{1, \ldots, n\}$ as follows : $J = \min\{i \in \{1, \ldots, n\} : X = X_i\}$. Show that X is a exponential random variable and find its parameters and further show that J is a uniform random variable on $\{1, \ldots, n\}$. (5).

- (b) Let X_n be a sequence of independent Bernoulli(1/n) random variables. Under which of notions of convergence a.s. convergence, convergence in probability, weak convergence, L^2 -convergence does the sequence of random variables converge ? (5).
- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and all the random variables are defined on this space.
 - (a) Let X_1, \ldots, X_n, \ldots be i.i.d. random variables with finite mean μ and finite variance σ^2 . Let $S_n = \sum_{i=1}^n X_i$. Show that $S_{n^2}/n^2 \xrightarrow{a.s.} \mu$. (5)
 - (b) Let X_1, \ldots, X_n, \ldots be i.i.d. random variables such that $P(X_1 = 1) = p = 1 P(X_1 = -1)$ with $p \neq 1/2$. Again, let $S_n = \sum_{i=1}^n X_i$ and define the random variable $Y := \sum_{n=1}^\infty \mathbb{1}[S_n = 0]$. Show that $Y < \infty$ a.s. (5).
- 3. (a) Define the Binomial probability distribution Bin(n,p) where $n \in \mathbf{N}, p \in [0,1]$ and the Poisson probability distribution Poi(c) with mean c for $c \in \mathbb{R}_+$. (1).
 - (b) For $k \in \mathbf{N}$, define $k^{(j)} := k!/(k-j)!$ if $k \ge j$ and 0 if k < j. Let $X_n \stackrel{d}{=} Bin(n, p_n), X \stackrel{d}{=} Poi(c)$ with $np_n \to c$. Compute $\mathbb{E}(X_n^{(j)}), \mathbb{E}(X^{(j)})$. (3)
 - (c) Let $X, X_n, n \ge 1$ be defined as above. Show that there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with random variables $Y, Y_n : \Omega \to \mathbb{R}$ such that $Y \stackrel{d}{=} X, Y_n \stackrel{d}{=} X_n$ and $Y_n \stackrel{a.s.}{\to} Y$. (6).